Commercially Viable Active Networking

Stuart Eichert'#, Osman N. Ertugay?, Dan Nessett, Suresh Vobbilisetty
3Com Corporation, Technology Development Center
5400 Bayfront Plaza
Santa Clara, CA. 95052
seichert@coopcomp.com, ertugay@dsl.cis.upenn.edu, dnessett@home.com,
vobbilis@ix.netcom.com

Abstract

Abstract - Active Networking is a new technology receiv-
ing significant attention from the research community.
To this point, however, it has not been examined from
the perspective of commercial viability. This paper pre-
sents an analysis of active networking issues with a view
to its possible uses in a commercial environment. It then
describes a prototype system built to address these is-
sues.

1 Introduction

While the Internet has grown significantly over the past
several decades, there are signs that applications would
benefit from a richer set of internet services than those
currently available. For example, the expected growth in
voice over IP (VoIP) traffic on the Internet will change
the service requirements presented to it. While real-time
delivery requirements for IP traffic have been rare up to
now, VoIP packets must be delivered within fairly strict
time constraints. Since the volume of VolIP traffic is
likely to grow as a percentage of internet traffic, the need
for hard or at least soft real-time guarantees will become
increasingly important. As other real-time traffic, such as
video, becomes prominent, the effect on internet services
will be even more dramatic.

Responding to these changing requirements, network
engineers and researchers are investigating ways to pro-
vide improved network service. One interesting technol-
ogy in this regard is active networking [16]. Active net-
working uses a programming language for mobile code to
dynamically change network device behavior. Special
messages (active packets) carry small programs (active
code) or references to such programs, which are executed
by active networking devices (active nodes). These pro-
grams may execute only once or they may be loaded into
node memory and execute many times. In the latter case
they may be loaded as shared libraries, being made avail-

' Work done while a student intern at 3Com.

Current address: Cooperative Computers, Inc.,

650 Castro St. Ste 120-216, Mountain View, CA
94041

* Work done while a student intern at 3Com, and doing
graduate work at the University of Pennsylvania.

able to many packet flows transiting the network device,
or they may be loaded as private code called by active
packets belonging to one flow. An application imple-
mented using active code is known as an active applica-
tion.

Not all devices in an active network must be active. Ac-
tive networks can (and probably will for the foreseeable
future) consist of active nodes interconnected by passive
networking hardware. From an abstract viewpoint, the
passive parts of an active network act as links between
active nodes.

Active networking supports a range of services character-
ized by the type of system that initiates an active applica-
tion. At one end of this range, end systems send active
packets, each of which carries a program fragment that
processes the packet at the active nodes visited along its
path. We call this approach capsule-based active net-
working. At the other end of this range, a privileged end
system dynamically augments network routers by
loading new programs into them while they run. We call
this paradigm programmable devices.

We are interested in active networking for many reasons.
However, the focus of this paper is an assessment of its
commercial viability. Consequently, we concentrate on
factors such as the motivation for active networking,
technical issues that must be solved to make active net-
working practical, and how active networks can provide
performance, security, interoperability, and
cost/functionality tradeoffs that are as good or better than
passive networks.

In the next section we examine some advantages and dis-
advantages of active networking. In section 3 we explore
technical issues associated with this technology that are
important to its commercial viability. Section 4 describes
an investigation we undertook to test some of the ideas
we describe in section 3. Following that, we present

some related work and then conclusions we have drawn
from this study.

2 Some Advantages and Disadvantages of
Active Networking

At first sight active networking may strike some as a bad
idea. The prospect of dynamically loading programs into
network devices thereby changing their behavior and con-
sequently changing the overall behavior of the network in
unforeseeable ways might seem to be a prescription for
disaster. While appropriate security and testing controls
can greatly reduce the probability of chaotic network be-
havior, there must be advantages that offset the additional
costs and risks introduced by active networking.

It is beyond the scope of this paper to give a complete
and comprehensive analysis of active networking advan-
tages and disadvantages, a subject that would require a
full length paper in its own right. Instead, we briefly in-
dicate how active networking differs from passive net-
working and discuss the tradeoffs between them.

Active networking has at least the following advantages:

* New code can be loaded into a device without reboot-
ing it. This means new functionality can be added to
a device without disrupting on-going activity, such
as routing protocol update exchanges, critical finan-
cial transaction traffic or real-time process control
traffic. Note that keeping the system safe and consis-
tent while adding and removing device functionality
is an issue that must be addressed by the active net-
working architecture.

* Active nodes can provide a wider variety of function-
ality than passive devices with the same amount of
program memory. A passive network device must
contain all of the code implementing its full feature
set’. An active node, on the other hand, need only
have resident the code necessary to support those fea-
tures in use.

* Once a passive device is deployed, its feature set may
only be modified by loading a new version of the
software. Generally, such software upgrades add mul-
tiple features to a device, which means they are infre-
quently rolled out. An active device allows incre-
mental feature upgrade, thus fostering more frequent
enhancements.

* Development of network services and applications for
different platforms is easier due to the platform-

* Of course, it is possible to have different software
loads for a given hardware platform, which mitigates this
problem somewhat. However, all of the code necessary to
support the features of a particular software load must
reside on the platform whether or not all of those features
are used.

independent languages that active networking is
based on. The use of programming languages sup-
porting mobile code eases the deployment of new
protocols on heterogeneous platforms.

These advantages are balanced by the following disadvan-
tages:

* Extra functionality is required on active devices to
run active code. This functionality requires space in
the device’s program memory, extra processing
power to execute active code, and field support to
correct any implementation deficiencies, all of which
introduce additional cost.

e It is hard to test all combinations of features imple-
mented by active code. In practice this means that the
number of such features supported by vendors may
be limited.

In order for active code to provide significant value-
added services, there must be a set of interfaces be-
tween the active code support base and native device
functionality. This requires extra development and
maintenance by the device vendor, which again in-
creases cost.

* Network forwarding performance of active packets is
inferior to that of passive packets forwarded by
hardware. However, how disadvantageous this is de-
pends on the types of applications that will utilize
active networking. Network control applications
should not be impacted greatly by low forwarding
performance.

* Exporting a powerful programming interface to the
network infrastructure raises significant safety and se-
curity issues. Addressing these requires additional
functionality, which increases cost.

Roughly, these issues are summarized as tradeoffs be-
tween flexibility and cost. Active networking delivers
more flexibility to end users, but it increases networking
vendor engineering and maintenance costs. Therefore,
either active networking products will be priced higher
than passive networking products in order to cover the
increased costs, or vendors will find ways to use active
networking to decrease other costs or increase their reve-
nue in other ways, such as increasing volume.

3 Technical Issues

Active networking introduces a number of significant
technical issues over and above those associated with
passive networks. These include:

® how to structure active applications,

® the general implementation strategy for the active
node, i.e., basing it on a general purpose operating
system or on an existing network device,

3.1

how to handle the relatively new performance, secu-
rity, interoperability, and cost issues specific to ac-
tive networking,

how to structure the execution environment provided
for active code, and

how to structure interfaces providing access to under-
lying device functionality.

Active Application Architecture

The commercial viability of active networking will rest
on the usefulness of the applications it supports. Very
little has been written to date on requirements and design
issues of active applications intended for a commercial (as
opposed to a research) environment.

In most cases commercial applications are:

Developed by vendors, who must maintain and en-
hance them,

Deployed by administrators, who must manage
them, and

Used by users, who depend on them.

Note that in a commercial environment the intersection
between the set of individuals associated with vendors
and administrators or administrators and users is a small
percentage of the total number of individuals in their un-
ion. This is generally not true in a research environment.
Consequently, much work to date on active networking
has not addressed commercial requirements.

Since each community involved with a commercial appli-
cation generally has different objectives and requirements,
individuals working with a commercial application will
do so in very different ways than those in a research
community. Specifically:

Vendors must fix application bugs and provide cus-
tomers with feature enhancements. Vendor customer
service organizations must identify the version of an
application used by a customer when a problem oc-
curs in order to provide field support as well as
communicate bug reports back to the appropriate de-
velopment team.

Administrators must be able to stand-down versions
of an application in order to replace them with a
newer version (to fix bugs or deploy new features).
They also must install new applications or new ver-
sions of them. In large deployments, it is administra-
tively difficult to install an application on each indi-
vidual end-system, which leads to the practice of in-
stalling them on servers from which they are down-
loaded or remotely executed.

When applications are upgraded to fix bugs or make
enhancements, it should not be necessary for users to
choose between the old and new versions when exe-

cuting them (although, it may be desirable to allow
them to do so). When a new version of an applica-
tion is installed, it should not interfere with current
executions based on older versions.

In a commercial setting, these requirements apply to ac-
tive as well as traditional applications and thereby en-
courage certain active application architectural choices. In
particular:

3.2

Vendors should tag or otherwise associate an active
application with versioning information. When de-
ployed by administrators, active applications should
support version identification for bug report-
ing/fixing.

When active applications are deployed, administra-
tors should be able to flush older versions from the
network and establish environmental controls that
prevent older versions from being reintroduced. Since
they are intended for research environments, the ac-
tive networking systems previously developed do not
provide mechanisms that achieve this objective.

When administrators install a new version of an ac-
tive application, it must not interfere with current
executions of older versions. Synchronization of ac-
tive code execution by application components is a
major issue. For example, when two versions of the
same active code run on an active node, they may in-
teract with common state in a way that interferes
with both of their executions.

Active node implementation strategies

Active nodes may be based on general-purpose operating

systems, such as one of the varieties of Unix, or they
may be based on an existing networking device, which
generally uses a proprietary or commercially supported
real-time operating system (RTOS). We use the term
software-based active node to describe the former and
the term hybrid active node to describe the latter. In
both cases only part of the device is dedicated to active
networking (however, see [7] for a description of an ob-
ject oriented node OS that fits very neatly into the active
networking paradigm). We believe that while this paper
concentrates on routers with special purpose hardware and
a real-time OS, most of our conclusions are, at some
level, also applicable to general-purpose OS-based end
systems which are active networking enabled.

Software-based active nodes are useful to investigate ac-
tive networking when packet forwarding performance is
not an objective. These systems are easy to program and
debug, are well known to a wide range of programmers
and exist in varieties that cost little or in some cases are
free. However, since forwarding decisions are made in
software, these nodes cannot deliver price/performance
advantages comparable to those of contemporary high-
performance networking devices.

Hybrid active nodes utilize most of the functionality of
an existing networking device and layer active networking
services on top of it. In many cases the active networking
services run on a management processor, while forward-
ing and lower-level services run on one or more commu-
nication interface processors. In very high performance
network devices, packet forwarding is handled by hard-
ware [11].

When constructing a hybrid active node from such a de-
vice, the execution environment must provide interfaces
to the forwarding, filtering and other underlying data and
control services. Active code then controls the device by
using these interfaces to manage the hardware and soft-
ware of the underlying device.

Given the almost universal practice in commercial high-
performance routers and switches of moving forwarding
into ASICs or other hardware, it is unlikely that active
networking used in the data plane (i.e., on the forwarding
fast path) will be commercially viable for the foreseeable
future. Consequently, we believe that the commercial
viability of active networking for high-performance
routers/switches rests on how useful it is in the control
plane.

3.3 Performance

Active networking utilizes a platform-independent pro-
gramming language to control a wide range of network
devices. While not strictly a requirement, in practice this
language will probably be interpreted and thus not pro-
vide very good performance. On the other hand, to be
competitive, network devices must deliver very high per-
formance.

There are a number of ways to address the performance
issue. One is to target active networking devices to those
parts of the network where features are more important
than performance (e.g., low-end office routers, workgroup
switches). However, these devices are often cost sensitive.
They are thus unlikely candidates to introduce leading
edge features, such as active networking, the value of
which is uncertain.

Another approach is to work on the mobile code perform-
ance problem. There is already work in this area, includ-
ing Just-In-Time compilers, more efficient byte code in-
terpreters and incremental compilation strategies. On the
other hand, problems such as how to build garbage col-
lectors for real-time systems are not yet fully understood,
so this approach is not entirely satisfactory.

An approach that works well for many legacy network
devices is to use the hybrid architecture described in sec-
tion 3.2. This limits any performance degradation to the
control plane, which has much less stringent performance
requirements than frame/packet forwarding or filtering.

3.4 Security

A major issue in active networking is how to perform
resource access control on network devices. Resources
may be fundamental device assets, such as link band-
width, node memory and node processor cycles or may be
more abstract, such as programming resources, (e.g., ob-
ject classes, object methods and object state), data re-
sources (e.g., packets, persistent storage), and communi-
cations resources (e.g., packet flows).

Active networking introduces new requirements for net-
work devices that lead to more sophisticated access con-
trol mechanisms. For example, active code executing in
one thread may wish to communicate with code executing
in another. These two threads may represent computations
carried out on behalf of two different principals. The ac-
cess control facilities in the execution environment must
control such communications according to the appropriate
policies.

Furthermore, providing access control to shared state may
be difficult. Interestingly, this problem was addressed in
the late 60s and early 70s in research systems, such as
Hydra [9], but little progress has been made subse-
quently, since commercially successful operating systems
(e.g., Unix) have more primitive access control mecha-
nisms. Consequently, researchers are reexamining prob-
lems that have not received significant attention for sev-
eral decades.

3.5 Interoperability

It is possible that in a large network different administra-
tive domains will support different active networking
infrastructure (e,g., ANTS [17] or ALIEN [1, 3]). It is
also possible that some domains will support more than
one kind of infrastructure.

Heterogeneity of active networking infrastructure creates
more problems for programmable devices than capsules.
In the latter case, active nodes that do not support the
appropriate infrastructure treat a capsule as if it was a pas-
sive message. Correspondingly, from the capsule’s point
of view, these active nodes behave like passive nodes".

For programmable devices, however, when two domains
of an active network support different active networking
infrastructures, coordinating their management requires an
understanding of how services in one might be provided,
or at least emulated, in the other. Otherwise, it is difficult
to define active code that achieves a specific objective in
both domains.

* This assumes an active node will forward packets
that carry no active information they recognize using tra-
ditional packet handling services.

3.6 Cost/functionality tradeoffs

Providing active networking functionality is not free. Not
only must network devices support the appropriate active
networking transport protocols, execution environments
and device service interfaces, they also must contain the
additional resources necessary to run active code. This
introduces extra cost that must be balanced by equally
valuable features. Furthermore, end systems (in the cap-
sule approach) and network management platforms (in the
programmable device approach) must be developed or
modified so that they create and send active packets. Fi-
nally, an active network must supply storage for active
code, which must be highly available and accessible to all
systems that require access to it.

3.7 Execution environments

When an active packet arrives at an active node, it is
processed by an execution environment. An active node
may support more than one execution environment, al-
though whether this is commercially viable is unclear.

An execution environment provides the following general
services:

® The execution of portable platform-independent code.

® A multiplexing substrate for executing threads. This
allows code from multiple active packets to execute
concurrently so they may block waiting for events
and resources without adversely affecting the execu-
tions associated with other active packets.

® Storage of active code. Active code may be cached in
the execution environment for efficiency.

® A security subsystem for controlling access to active
node resources. These resources may be native to the
node, such as clocks, buffer memory, or network in-
terfaces or they may be logical resources created by
shared libraries or representing exported objects of
executing active code.

The commerecial viability of a particular execution envi-
ronment architecture depends on how well it supports the
active application requirements specified in section 3.1.
An execution environment should

® Support versioning,

® Support the retirement of old versions of active code,
and

® Allow currently executing active applications using
old versions to complete before the old version im-
plementations are removed.

3.8 Service interfaces

For both software-based and hybrid active nodes, an exe-
cution environment must provide interfaces to device
services. For software-based nodes, these will control the

underlying operating system services. For hybrid nodes,
they will control similar functionality, but the interface
implementations will generally manipulate specialized
hardware and software that controls those services.

While a device may support multiple execution environ-
ments, it is unlikely it will provide more than one inter-
face set to its services. Furthermore, porting execution
environments to different devices requires matching their
device service calls to the interfaces provided. Standardiz-
ing these interfaces makes porting easier.

One effort at standardizing the interface between an execu-
tion environment and the node OS is the NodeOS Inter-
face Specification of the DARPA Active Networking
community [13]. This service interface defines five re-
source abstractions: 1) thread pools, 2) memory pools, 3)
channels, 4) files, and 5) flows. The specification defines
a set of service primitives for each resource abstraction.

The NodeOS Interface Specification is a useful tool for
designing software-based active nodes, for which all as-
pects of the active node implementation are available for
modification. For hybrid active nodes, there is less flexi-
bility in the execution environment and node OS design
space, making it difficult and sometimes impossible to
follow the specification architecture. The network device
on which we layered our experimental execution envi-
ronment (see section 4.1) has pre-existing models for
threads, memory allocation, channels, files and flows.
These models were significantly different than those pre-
sented in the NodeOS Interface Specification.

For example, the device software runs over a commercial
real-time OS (RTOS) on which is layered a Java Virtual
Machine. Java threads (the primitive execution resources
in our execution environment) are directly mapped to
RTOS threads. Resources are allocated to RTOS threads
using a pre-existing set of service primitives that are not
easily accessible to the execution environment. This is
true for each of the other resource abstractions as well.
Consequently, we did not follow the NodeOS Interface
Specification. Instead, we developed service primitives
that seemed better suited to a hybrid active node with a
pre-existing resource architecture.

We designed a set of Java interfaces for controlling serv-
ices on our hybrid active node. We then implemented
these interfaces using a combination of Java, C++ and C,
the latter two languages being used for adding functional-
ity to the existing device software.

Our interface set operates on 3 resource abstractions: 1)
packet flows (not to be confused with flows of the
NodeOS Interface Specification — packet flows closely
resemble channels defined in that document), 2) MIB
resources, and 3) communication resources. Our node
OS model assumes that packet flows are primitive re-
sources established by the node OS, not by the execution
environment. Our packet flow service primitives allow an

active application to specify packet classification and
handling information, which is used by the node OS to
configure the device hardware to apply special processing
to the packets moving through these flows.

There are three interface sets, one each for: 1) filtering
and forwarding management, 2) MIB management,
and 3) message communication. Filtering and forward-
ing is combined into one interface set because managing
forwarding information is logically equivalent to manag-
ing filters driven by only destination addresses. MIB
management gives active code access to a wide range of
device functionality. Finally, message communication
services allow active code to send raw IP packets’.

3.8.1 Filtering and forwarding manage-
ment

Filtering and forwarding management (FFM) gives active
code the ability to manipulate filter groups consisting of
a set of filters. A filter group is associated with an action
that will be applied to packets that match the filter group.
A filter group can have either hit or miss semantics. In
hit semantics, a packet satisfies a filter group if it
matches any filter in the group. In miss semantics, a
packet satisfies a filter group if it matches no filter in the
group. The associated action is performed on packets
matching the group.

One of four types of action may be associated with a filter
group:
® Drop Action: satisfying packets are dropped,

® Forward Action: satisfying packets are forwarded to
a specified interface,

® Prioritize Action: satisfying packets are forwarded to
an identified interface with a specified priority,

® Registered Action: satisfying packets are processed
by a specified routine. The routine can be a C func-
tion compiled into the system, or a Java class which
implements a well-known method. Section 4.1.3 de-
scribes the Registered action type more completely.

FFM supports both layer-3/4 and layer-2 filter groups. A
layer-3/4 filter operates on the address values carried in
the IP/UDP/TCP header. Layer-3/4 filters are specified
using a source address, source address mask, destination
address, destination address mask, source port lower
bound, source port higher bound, destination port lower
bound, and destination port higher bound. Source and

> There is no reason why active code cannot send both
active and passive packets. To keep the interfaces simple,
we assume executing active code sends an active packet
by first formatting it appropriately and then presenting to
the send interface method as a simple byte buffer. Active
code can receive messages using the filtering/forwarding
management interfaces.

destination ports are only meaningful for UDP and TCP;
these values are ignored for groups specifying other pro-
tocols. A layer-2 filter is specified using source and des-
tination addresses only. A filter group is comprised of
either layer-3/4 or layer-2 filters, mixtures of these two
types are not allowed.

Both layer-3/4 and layer-2 filters are divided into two
categories: interface-based filters and flow-based filters.
Interface-based filters are applied to all packets passing
through a given interface in a specified direction (in or
out). Thus interface-based filters are suitable for situations
where all the packets coming in or going out of an inter-
face are of interest. Flow-based filters, on the other hand,
are applied to packets moving through the device, regard-
less of the interface used. Flow-based filters apply only to
packets arriving from another node, i.e. packets generated
by the active node are not processed.

The FFM service interface supports:

® adding filters to a group,

® deleting filters from a group,

® searching for filters in a group, and

® creating actions and associating them with a group.

A layer-3/4 filter group is identified by a protocol number
and cast type (unicast vs. multicast.) In the case of inter-
face-based filters, filter group identification also includes
an interface number and the direction of packet flow (i.e.,
into or out of the interface).

To associate different processing with packets satisfied by
the same filter group, a registered action must act as a
dispatcher, sub-multiplexing packet processing to other
procedures. For example, the FFM interface supports
only one filter group for unicast flow-based UDP packets.
Consequently, if different sets of unicast UDP packets
must be processed using different procedures, the action
routine associated with the unicast UDP filter group must
classify the packets passed to it, separate them into the
appropriate set, and call the appropriate routine.

At first sight this might seem to be a poor design. How-
ever, we carefully chose this approach to solve the rule
list ambiguity problem. Specifically, if we had chosen to
associate actions with filters, instead of filter groups, an
ordering of filters in a group would be required to disam-
biguate the action to take. That is, if a packet satisfies
two filters, each associated with different actions, one
must take precedence over the other. In the past, this has
led to confusion when trying to understand rule list se-
mantics [5].

Of course, this approach moves the problem of disam-
biguation up to the demultiplexing code. However, this
code can implement arbitrary algorithms, while filter lists
are processed according to a fixed algorithm, making it

difficult and in some cases impossible to achieve the de-
sired semantics.

It is not possible to sub-multiplex drop, forward or pri-
oritize actions, since these are generally supported by the
hardware. The only way to solve this is to use a regis-
tered action that performs these operations in software.

While our approach is less flexible than associating ac-
tions with filters, there is no possibility of ambiguity
when filters are dynamically added and removed from
filter groups. Whether this advantage outweighs the loss
of flexibility is untested (however, see section 6).

3.8.2 MIB variable management

The MIB management service interface allows active code
to manipulate the SNMP MIB variables implemented by
the underlying device software. It supports the following
three SNMP operations: 1) get, 2) get-next, and 3) set.
All operations take a MIB object identifier (OID) as an
input parameter, “set” also taking a value as input.

The values associated with SNMP MIB variables can be
one of 3 simple types: 1) Integer32, 2) Octet String, and
3) Object Identifier’. Consequently, the result communi-
cated through this interface consists of a type identifier
and a value. For “get” operations, the type is returned
first, allowing the caller to choose the appropriately typed
method to obtain the variable value.

The “get-next” operation returns a result that contains the
OID and value of the variable “after” the one identified in
the call. Continued use of “get-next” supplying the OID
returned by the previous call allows active code to trav-
erse a MIB table or array. The “set” operation is imple-
mented as three separate methods, each corresponding to
one of the supported MIB variable types.

When designing the MIB variable management service
interface, we encountered the following problem. MIB
variables are defined using ASN.1 syntax and the map-
ping between ASN.1 syntax and its in-memory represen-
tation as a class hierarchy is non-standard. In order to
ensure the usability of the MIB variable management
interface on a wide number of devices, the interface makes
no assumption how MIB variable values are represented
by internal program data structures.

3.8.3 Message communications

The packet communication interface provides a way for
active code to send packets to other nodes. Currently we
support layer-3 packets, although the code is architected
to add support for layer-2 frames. In addition to the stan-
dard Java Network API, our layer-3 communication serv-
ice interface allows active code to send raw IP packets.

® While SNMP also supports MIB objects of type In-
tegerl6, its use is rare and objects of this type do not
appear in standard network management MIBs.

The interface also supports creating IP and UDP headers,
computing checksums, and creating ANEP packets.

4 An Implementation and Results’

We implemented an active networking infrastructure and
built two active networking applications in order to in-
vestigate the commercial viability of this technology. Our
infrastructure used commercially available platforms, such
as a commercial-grade layer-3 switch and an LDAP direc-
tory system. Of the two active applications we built, one
uses capsules, while the other is based on programmable
device architecture.

4.1 An experimental execution environ-
ment

We implemented an execution environment (EE) based
on the Java Programming Language on a commercial-
grade layer-3 switch. This implementation consists of
Java software that manages the execution of active code
and C/C++ software that inserts the appropriate function-
ality into the device for FFM, MIB and communications
services.

As noted in section 3.1, developing, deploying, and us-
ing active applications (AAs) are distinct activities that
are performed by different groups of people. We kept this
in mind while designing the EE. Development involves
AA implementation, packaging, and distribution. In most
cases, development will also include creating applications
for end systems that will use AAs. Deployment involves
administering the use of AAs in an active network.

4.1.1 Active code transport

The first design issue we faced was whether to carry ac-
tive code or a reference to it in capsules. In the first ap-
proach, an end system that sends a capsule must store (at
least temporarily) the code locally. This can be achieved
by directly installing the code on every end system that
will use it, having the end systems retrieve the code from
a server whenever they need it, or combining the two
approaches using a caching strategy. Having multiple
copies of active code on a large number of end systems
introduces code maintenance problems. Furthermore, hav-
ing each capsule in the same flow carry code is not band-
width-efficient, since code may be cached at active nodes.
One variation of this approach has an end system place
code in capsules until all intermediate active nodes have
cached it. Subsequently, the end system would send out
capsules with references to the code. However, it is hard

” This work was done at a time when 3Com had a
router business, which it exited in 2000. Consequently,
we will not investigate most of the open questions identi-
fied in the paper’s text. They are presented for the benefit
of those who might wish to explore them further.

for end systems to determine when all active nodes along
a path have a cached copy.

In the second approach capsules carry a reference to active
code and active nodes retrieve it using the reference, cach-
ing it for future use. For each capsule, the node executes
the code directly if it is in its cache, otherwise it contacts
a server (or possibly another active node) to retrieve it.
With this approach, the burden of retrieving code is on
the active nodes. A subsidiary characteristic of this ap-
proach is it makes it less likely that capsules are frag-
mented across multiple IP packets. Furthermore, it allows
nodes to use TCP-based protocols to reliably fetch active
code.

The tradeoffs between these two approaches are driven by
the ratio of end systems to active nodes. If there are more
end systems using an AA than active nodes running it,
there is less network traffic if active nodes retrieve code.
In our design, we assume that the average number of end
systems using an AA will be larger than the average
number of active nodes running it. Consequently, cap-
sules carry code references rather than code.

4.1.2 Active code storage, distribution and
naming

Our code transport design requires a scheme for retrieving
code based on a reference. This involves two issues: code
storage and distribution, and code-naming.

We address the code storage and distribution issues as
follows. Capsules carry references specifying where and
how to retrieve the active code. As stressed in section
3.1, we believe AA maintenance is an important issue for
commercially viable active networking. AA maintenance
is the problem of ensuring that when a new AA version,
which fixes a bug or enhances some feature is released,
the active network eventually removes all old versions of
the AA residing in active nodes.

One factor that is closely related to this issue is how and
where the infrastructure stores AAs. It is important that
bug fixes propagate to all active nodes quickly, and when
an AA expires that it becomes inaccessible or unusable by
active nodes. Storing AAs on a large number of end sys-
tems makes it difficult to achieve this objective, since
end system management is rarely integrated with network
management in a commercial environment.

If AAs are stored on servers supporting replication, updat-
ing AAs and ensuring that active nodes use the current
version is facilitated. Our experimental infrastructure uses
LDAP servers for AA storage. LDAP supports replication
and since standards-based network policy management
will use LDAP services, using them makes it easier to
deploy and use active networking in policy-based net-
works.

Code-naming is also an important issue. We use a nam-
ing scheme based on Java fully qualified class names.

Our active code packages contain a number of class files,
one of which is distinguished. It is used by the EE ini-
tially (through a well-known entry point) to process a
capsule. We call this class an iclass (initial class). Each
iclass extends an abstract base class provided by the EE,
and implements a method called process whose signature
the base class enforces. We name the code package by the
fully qualified name of the iclass and its version, which
is maintained by a versioning system. Since class names
in Java are hierarchical, lookups are efficient in hierarchi-
cal directory infrastructures like LDAP. An iclass name is
intended to indicate what the code does. Global unique-
ness is achieved only if the Java class naming convention
is strictly obeyed and the versions are correctly main-
tained by developers.

Classes in a package other than the iclass are the closure
of classes required by the iclass for processing capsules
(with the exception of system classes provided by the
EE). Whenever an iclass is changed, its closure classes
may also change, which is why we use the iclass name
and version identifier to identify the active code package.
The package carries version information for each class that
it contains.

A capsule carries an iclass name and version as the active
code reference. When the EE sees a new reference, the
code package is retrieved using the information from the
capsule. The code package is carried in a signed JAR file.
When the package is retrieved, the signature is verified
and the classes (and their versions) are extracted.

The byte codes for classes are stored by the EE in a byte
code store for later use by a class loader. A byte code
image in a code package is stored only if it is not already
in the byte store (i.e., the class name and version do not
match those of any existing entry). Otherwise, a usage
counter for the byte code entry is incremented to indicate
the number of iclasses that depend on it.

Since a class with the same version number may appear
in multiple code packages, carrying the byte codes for all
closure classes in a package increases the required storage
space (only at the server, not in the active node) and the
bandwidth necessary to retrieve it. On the other hand, the
number of bytes in an iclass package is likely to be quite
small (e.g., the JAR file for the Power Traceroute applica-
tion we developed is 5.7K bytes), so this is unlikely to
be a practical problem. The redundant storage problem
could be prevented by storing each class separately in the
server in its own signed package. The active nodes could
then fetch only the classes that are required by an iclass
but not found in the node. However, this approach would
introduce considerable overhead in the number of server
requests made by the active node (one request to find the
required classes, one request for each not-already-node-
resident class) In addition, each closure class would re-
quire signature verification increasing the processing nec-
essary to retrieve an iclass. Note that we trust the signed

code in terms of resource usage, security, and safety.
Hence signature verification is very important for ensur-
ing that the code does not harm the active node or other
active applications.

Another important feature of our EE is it allows dynamic
unloading of unused AAs (i.e., all non-system classes
within an iclass closure). A separate class loader is used
for each iclass. The class loader is created with a table of
references to the byte codes required by that iclass. Thus,
each iclass executes in its own name space, and class un-
loading becomes possible at the iclass level. Java unloads
classes in groups, where the classes loaded by the same
class loader constitute a group. Whenever the class loader
for a group becomes unreachable its classes are unloaded
as a unit.

Our EE does not completely solve the AA maintenance
problem. Firstly, active nodes are not notified when a
new version of a class is installed in the LDAP servers.
Secondly, capsules referring to the old version may con-
tinually refresh the cached iclass copy. Finally, active
nodes will not use a newer version of the iclass when
they fail to find an older version in the LDAP server(s).
We have developed approaches to each of these problems,
but they are untested.

4.1.3 The service interfaces

Implementing the MIB management interface was
straightforward. Each service request (i.e., get, get-next,
and set) is implemented as a class constructor. The object
returned by the constructor has methods for getting the
operation status and its results (in the case of get and get-
next).

Our implementation of FFM supports both flow-based
and interface-based layer-3/4 filters (layer-2 filters are only
partially implemented). Implementation of registered ac-
tions operates as follows. A registering iclass is one that
creates a registered action. A character string identifies a
registered action. During iclass registration, if the regis-
tered action name matches that of a C function in the
EE’s list of native packet processing functions, the action
is internally flagged as native. Otherwise, the action is
flagged as a Java class and the string is assumed to con-
tain the fully qualified name of an iclass and its version.
This iclass is called a registered iclass.

When a packet satisfies a filter group associated with a
registered action, the action flag is checked. If the regis-
tered action is a native C function, the execution envi-
ronment calls it with the packet as a parameter. If the
registered action is a registered iclass, the execution envi-
ronment calls the process method of an instance provid-
ing the packet as a parameter. If an iclass execution con-
text does not already exist, the code package for the regis-
tered iclass is retrieved from the server that contained the
registering iclass package. Then, an execution context is
created for the registered iclass. Note that registered

iclasses are loaded by a different class loader than the
registering iclass. So, if the registering iclass is unloaded,
the registered iclass is still available.

In our implementation, we retrieve the registered iclass
code package when the first packet satisfying the filter
group arrives. However, we could have chosen to do the
retrieval when the iclass is initially registered. There are
tradeoffs between these two strategies. The former does
not use memory in the node until the iclass is used, but
the latency for processing the first packet is high due to
code retrieval. In the latter case, these tradeoffs are re-
versed.

It is important to keep in mind the difference between
capsule and FFM processing. Each capsule contains the
name of the iclass to be executed when it arrives. Packets
matching a filter group initiate execution of an iclass only
by virtue of this relationship, which is ephemeral (i.e.,
filter groups can be registered and unregistered). While
the same iclass may be named in a capsule and associated
with a filter group, its execution in the two cases occurs
for very different reasons.

Other action types (Drop, Forward, and Prioritize) are
performed by the device without EE intervention’. The
primary goal of these types is to provide active code the
ability to control and manage packet flows without intro-
ducing significant packet flow performance degradation.

The FFM implementation mediates creation of filter
group instances and stores them in a global table. Opera-
tions on each of these instances are synchronized. This
allows the FFM implementation to ensure two different
threads are not modifying the same filter group at the
same time.

Our implementation of the message communications in-
terface provides active code with the ability to send raw
IP packets by placing an IP header in front of a given
payload. The code can specify TTL, protocol number,
source address, and destination address field values. Al-
though code may use standard Java classes for sending
UDP packets, our implementation provides interfaces for
creating and encapsulating a UDP packet in a raw IP
packet, since the standard classes do not allow manipula-
tion of an IP or UDP header.

4.1.4 Capsules

We use ANEP version 1 [2] in our implementation and
UDP packets with destination port number 3324 to trans-
port ANEP packets.

Our EE defines four new ANEP options. All capsules
must carry an iclass option, containing the iclass name
and version. Capsules may also carry:

® Of these we have only implemented Drop.

A server-info option, containing information on
how and where to retrieve the code package;

A signer-info option containing an identifier indicat-
ing the identity of the principal who signed the code
package;

An auto-forward option, indicating whether to for-
ward the capsule based on its end-to-end addressing
information before it's processed by the EE.

UDP packets with a destination port of 3324 are captured
by the underlying system hardware without impacting the
performance of other packet flows. If the packet contains
an ANEP (version 1) header, it is processed further. If
not, the UDP packet is returned to the underlying system
for forwarding. ANEP version 1 packets are checked to
see if their type ID matches that assigned to our EE and if
they contain an iclass option. If not, the UDP packet is
returned to the underlying system for forwarding. Packets
with our type ID and an iclass option are passed to the
EE. The EE first extracts the iclass option and checks to
see whether it already has an execution context associated
with it in the node. The execution context for an iclass
consists of a class loader, references to class byte codes
from the code package stored by the EE, a timer, a thread
group, server information used for retrieving the code
package, and a class object for the iclass. A new iclass
instance is created for every capsule to ensure processing
of one capsule does not block processing of subsequent
capsules.

If the execution context exists, the iclass expiration timer
is refreshed, a new instance of the iclass is created and a
specific method of the instance is invoked with the
ANE-P options and payload as parameters. The EE per-
forms this invocation in a new thread of execution resid-
ing within the thread group for the iclass. If an execution
context does not exist, the EE creates one and the capsule
is processed as above. The EE removes an execution con-
text when its timer expires, provided there are no active
threads in the thread group. Otherwise, the timer is re-
freshed and the same check is performed at the next expi-
ration. Note that we trust the signed code not to produce
run-away threads.

4.1.5 Security

Our approach to active networking security relies on func-
tionality provided by Java. A long-term strategy is to
utilize the fine-grained access control features of Java 2.0
[6]. These utilize access control policy information main-
tained by the Java Runtime to establish permissions as-
sociated with a protection domain. In the current imple-
mentation of the Java 2.0 security architecture, protection
domains are collections of classes and objects, which are
assigned permissions based on the location from which
the Java Runtime fetched a class implementation as well
as the signature used to sign it. The Java 2.0 architecture
allows future implementations to associate a principal

identity and delegated permissions with a protection do-
main.

In our implementation, each active node is configured
with a single static public key. The execution environ-
ment uses this public key to verify a JAR file’s signature
and the verified identity to perform authorization. We do
not currently support the use of certificate chains. How-
ever, we could easily change our implementation to con-
figure active nodes with multiple trusted identities with
their associated public keys and to process certificate
chains for signature verification.

4.2 Applications for Active Networking

Given this execution environment it is straightforward to
create applications for the management and configuration
of network devices, the installation of new networking
protocols, and the creation of new networking services.
We developed two sample applications to investigate the
power of active networking. First is a dynamic policy
management application that builds on previous work
with multi-layer firewalls. Second is a power traceroute
application that retrieves MIB variable data at each active
node it visits on the path to its final destination.

4.2.1 Dynamic network policy management

We implemented a dynamic policy management applica-
tion, which tested the ability of active code to control
network device behavior in response to local events. This
application enhanced our multilayer firewall (MLF) proto-
type, which implements firewall functionality within a
network, rather than at its borders [12]. We modified the
MLF prototype to support timed filters using active code
downloaded from the MLF management system to active
nodes.

Timed filters are firewall rules enforced only during a
certain period of time, like Monday through Friday of
every week, or nine-to-five each day. Our implementation
of timed filters has three components: a Graphical User
Interface, filtering code to set and clear the filters, and
active objects.

The Graphical User Interface is written in Java using
Swing, the GUI library for JDK 1.1.6 and higher. It pre-
sents a network administrator with a table of filter rules,
which define MLF filtering policy. To support timed
filters, we added another column to the MLF filter rule
table, which allows a network administrator to specify a
period of enforcement for each rule. Each period defini-
tion includes a start date/time, an end date/time and a
repetition term. While the initial two items are obvious,
the repetition term allows an administrator to specify how
often to repeat the enforcement of a rule. An administrator
has the option of selecting a period of enforcement value
of always, which means the rule is not time based.

As described in section 4.1, our prototype active node
supports IP layer packet filtering through a combination

of hardware and software services. Our active MLF proto-
type uses an early version of the interfaces described in
section 3.8.1 to set and clear filters that drop packets.

We use active objects to implement the timed filters de-
fined by the active MLF management system. An active
object has data members containing the filter and en-
forcement period information corresponding to one rule in
the active MLF firewall table. When an active node re-
ceives an active object, the execution environment creates
a thread by passing the run method of the active object to
the thread constructor. An active object is serializable,
meaning its state can be captured, preserved, and then
used to reconstitute it on a different system.

When the active MLF management system processes its
firewall rule table, the active objects it creates (one per
rule) are serialized and placed in a Java archive (JAR).
The JAR file is deposited in an LDAP directory system
by the active MLF management system, which then sig-
nals the appropriate enforcement device that it has a new
archive to retrieve by sending it the archive’s distin-
guished name. Prior to creating new threads for each ac-
tive object, the execution environment terminates the
threads associated with the existing MLF active objects.

Our experience with active MLF taught us the following:

® In the original MLF prototype, filter data is written
to flash memory so that security policy remains en-
forced even when the device reboots. However, in the
active MLF prototype, filter data is encapsulated in
objects. Consequently, for a practical deployment of
active MLF, active code may need to be stored and
retrieved from local storage as well as central servers
in order to deliver the same security guarantees. This
introduces new complexity into the AA maintenance
problem, which we did not foresee.

® Another objective of our active MLF prototype was
to learn how quickly we could modify the filtering
controls in the underlying device. Since active MLF
changes firewall rules in an active device by eliminat-
ing those currently effective and then establishing the
complete filter rule set once again, measuring how
long it takes to transition from one policy to another
overestimates filter rule modification time. However,
an independent experiment demonstrated that we can
add or delete a filter to/from a filter group in less
than 10 milliseconds. While these times are depend-
ent on our implementation as well as that of the un-
derlying device, it provides evidence that practical
control plane interfaces are possible.

4.2.2 Power traceroute

Power Traceroute is a capsule-based active application for
retrieving information from intermediate nodes along a
path between a source and destination. The capsule speci-
fies a list of SNMP MIB variables, and the active nodes

reply with a list of MIB variable and value pairs. The
Power Traceroute iclass is dynamically loaded into inter-
mediate active nodes when required, and dynamically
removed when the iclass timer expires.

Power Traceroute sends one capsule to investigate node
information along a path. The alternative would be to
send out a set of SNMP requests to each intermediate
node. This would require the end system to discover
them and then send each a separate SNMP request. Power
Traceroute thus reduces network traffic considerably. Fur-
thermore, since the Power Traceroute iclass is signed,
administrative domains have a higher degree of confi-
dence that the application will not access MIB data in an
inappropriate way. On the other hand, allowing end sys-
tems to use SNMP to access intermediate node MIBs
does not constrain them in how they use that access privi-
lege.

Power Traceroute is implemented as a single class. The
payload of the ANEP packet carries several flags, a se-
quence number, the number of variables requested, and a
list of those variables. The iclass option in the ANEP
header refers to the signed Power Traceroute package. The
server type and location information in the server-info
option indicates where the iclass is stored.

The Power Traceroute active code forwards the capsule to
the next node after incrementing the sequence number.
Forwarding is based on a parameter passed to the code by
the EE, which specifies the destination IP address of the
capsule. The values for the listed MIB variables are re-
trieved using the MIB service interface and the results put
in a UDP packet. This is sent back to the original source
of the capsule using information carried by options
passed to the iclass by the EE, specifying the source IP
address and UDP port.

The client application at the end system listens on the
UDP port on which it sent the capsule. As replies from
active nodes arrive, they are parsed and displayed.

We conducted several experiments using our Power Trac-
eroute prototype to gain an understanding of active appli-
cation performance. We first measured the effect of active
networking on the performance of other traffic passing

through the node. We performed experiments on the test-

bed shown in Figure 1.

AN? [

Figure 1 — Active Network Testbed

AN3 == AN1

—(ws)

All links between systems are 100 Mbps Ethernet. In our
experiments, a workstation (WS) sends packets to PC2 as
fast as it can, utilizing all the available bandwidth. The
observed throughput between PC2 and WS is 95
Mbits/sec.

In our first experiment, we initiated PC2 to WS traffic,
then attempted to interfere with it by sending Power
Traceroute capsules from PC1 to PC3. As soon as AN1
sends a response back to PC1, PC1 sends another capsule
towards PC3. As expected, this had no effect on the traf-
fic between WS and PC2. Capsules are captured by the
hardware and forwarded to the management processor,
which does not interfere with the hardware processing of
other packets, except when resources are depleted (see
below).

We performed another experiment with the same configu-
ration, except PC1 sent capsules to PC3 as fast as possi-
ble without waiting for responses from ANI. Initially,
the traffic between WS and PC2 was not affected, but
eventually throughput decreased to zero.

We also measured the performance of some of our service
interfaces. Setting the value of an OctetString variable
takes approximately 170 ms. Getting the value of an Oc-
tetString variable takes 50 ms and getting the value of an
Integer variable takes 35 ms. Adding or removing a filter
to/from a filtergroup takes 5 ms on average. Also, a
Power Traceroute capsule is processed in approximately
200 ms (without any SNMP variable queries).

Our experience with the Power Traceroute prototype
taught us the following:

® The prototype is fairly simple and could be improved
in a number of ways. For example, it might be en-
hanced to support table and array retrieval, OID pre-
fix traversal and determining whether a particular fea-
ture is enabled along a path.

® Power Traceroute illustrated one deficiency of our EE
design. While we authenticate and authorize active
code implementations, we do not do this for cap-
sules. Providing this functionality is straightforward
(e.g., capsules can be signed by a principal and
checked for authorization at each active node).

® Experimenting with the Power Traceroute prototype
also demonstrated that we need better resource man-
agement controls. As described above, we sent Power
Traceroute capsules along a path as fast as an end
system could generate them (without waiting for re-
plies). As expected, this overwhelmed the manage-
ment processor running the EE, leading to a large
number of active packets waiting in buffers at lower
levels of the system. This drove device throughput to
zero, since no buffer space was left for forwarding.
Consequently, a practical implementation needs ways
to throttle capsule traffic so this cannot happen.

4.3

The experience we gained during the implementation of
our execution environment as well as during the devel-
opment of and experimentation with our two active appli-
cations leads us to the following conclusions:

General observations

® Hybrid active nodes are feasible. Not only is it pos-
sible to build them, it is also possible to use them to
support interesting active applications. While a num-
ber of problems remain to be addressed by our hybrid
active node prototype (e.g., capsule authentication,
robust control plane resource management), we are
convinced these are tractable.

® The hybrid active node approach isn’t free, however.
Each service interface exported for use by active ap-
plications requires implementation of a significant
amount of device specific code. Therefore, the num-
ber of service interfaces should be kept as small as
possible. We believe the MIB service interface is
powerful and can be used to support a wide range of
device interaction requirements.

® While we did not comprehensively stress test our
execution environment implementation, the experi-
mentation we carried out with our active applications
demonstrates that control plane based active network-
ing can deliver high forwarding performance and yet
provide the flexibility that justifies active network-
ing.

® We believe the general categories of service interfaces
we developed (filtering and forwarding management,
MIB management and communications) are sufficient
to build commercially viable active applications. We
have successfully used our MIB management service
interface and believe it is well-suited for a wide range
of active applications. However, we think the inter-
face could be improved by supporting SNMP trap
functionality. We are not satisfied with the current
architecture of our FFM service interface and have
several ideas how it might be improved.

e We found it hard to debug active applications. De-
bugging our hybrid active node required us to follow
execution paths through Java application code, Java
execution environment implementation code, and
frequently down into the device software. While ap-
propriate quality assurance testing might eliminate
the last case in a product, use of a Java remote de-
bugging tool may introduce product support prob-
lems, as from its perspective the execution environ-
ment and active application are a single Java execu-
tion. For example, it is unlikely that vendors will
openly publish source code for their EEs, which may
interfere with active application debugging. Conse-
quently, we believe there needs to be significant in-
vestigations examining how to support active appli-
cation debugging in a commercial environment.

® We learned we didn’t need to explicitly support
shared libraries. We use the class loader features of
Java to separate active application address spaces,
thereby creating containment domains that isolate
their executions. In effect, our byte code store im-
plements something similar to shared libraries, ex-
cept it doesn’t support state sharing. We have an ini-
tial design of a global shared state service, but it is
untested.

® We discovered that naming active code packages by
iclass name and version is insufficient to properly
manage active applications. Specifically, if two prin-
cipals sign a package named by the same iclass name
and version number, there is ambiguity as to which
package takes precedence. Therefore, we now believe
active code packages should be named by iclass
name, version and signer identity.

5 Related work

Jaeger, et. al. 8] describe another implementation of ac-
tive networking on a commercial router platform. How-
ever, their published work does not investigate the com-
mercial viability of this technology in detail. Active net-
working has enjoyed a significant growth in interest over
the last several years and a number of efforts address
problems similar to ours.

ANTS [17] is an active networking system developed at
MIT that uses Java as its mobile programming language.
When an ANTS capsule requiring non-resident active
code arrives at an active node, a request for the code is
sent back to the active node that forwarded the capsule.
Since the antecedent node followed the same procedure, it
normally has a copy. While this is an elegantly simple
distribution technique, ANTS does not support
versioning. Consequently, there is no way to identify
which active application code is more recent. Capsules
referring to old versions will continue to pull that code
into the network after newer versions are deployed.

ANTS names active code using an MD5 message digest
of the code content. This provides highly probable global
uniqueness, but is not indicative of what the code does.
In addition, looking up a name is not very efficient be-
cause of the flat name space.

ALIEN [1, 3] uses Objective CAML as its mobile pro-
gramming language and its execution environment pro-
vides a system facility, called the Core Switchlet that
arbitrates active code access to execution environment
resources. The Core Switchlet maintains and enforces
policy that controls which functions are available to ac-
tive code. Our security and resource-multiplexing model
is much less sophisticated than ALIEN’s. This was a
deliberate choice. We believe an initial deployment of
active networking can use a simple trust model for which
the principal signing active code is trusted to behave

properly (both from a security as well as a resource man-
agement perspective).

For example, initially vendor equipment might only run
active code signed by it. The vendor then takes the re-
sponsibility to ensure active applications do not interfere
unnecessarily with one another and do not introduce secu-
rity hazards. While in the long run a more sophisticated
security model is desirable, signed active code and signed
capsules would allow vendors and users to gain experi-
ence with active networking while the research commu-
nity investigates this issue. We think that the security
model provided by Java 2.0 (with enhancements sup-
ported by its architecture) provides a good foundation for
a future active networking security model.

Smart Packets [15] provides a service interface allowing
active code to access MIB data. It also authenticates cap-
sules using an integrity check of their contents signed by
a private key. We have already stated our view that a MIB
service interface provides a powerful node management
capability. The capsule signing approach used by Smart
Packets seems promising.

Raz and Shavitt report work they have conducted on ap-
plying active networking to network management [14].
They also describe a service interface to underlying device
functionality through its MIBs. Their system model di-
vides an active node into two entities, an IP router and an
adjunct active engine.

We have taken a similar approach to theirs, although our
implementation integrates both entities on a single de-
vice. Unlike our prototype, theirs does not support cap-
sules. Their model allows active code to intercept non-
active packets and manipulate them, as does ours. How-
ever, it appears that all non-active packets are manipulated
by software, whereas our prototype allows active code to
manipulate non-active packets by controlling the underly-
ing forwarding hardware.

RCANE [10] allows active code to specify a filter that
will be applied to active packets received on one of its
interfaces. When a packet or frame satisfying the filter
arrives, it is passed to the active code for processing. This
service interface is similar to that provided by our FFM
facility. However, we allow active code to assign an in-
dependent iclass to the processing function, which re-
mains associated with the filter group even after the code
that registers it is unloaded.

CANES [4] allows capsules to select one of a set of fixed
functions available at active nodes to process their con-
tent. It does not allow capsules to carry code or references
to code, thereby providing strict controls on active appli-
cation behavior. While there are specific security and effi-
ciency advantages to this approach, we don’t see why the
use of signed code cannot be used to deliver equivalent
assurances.

6 Conclusions

The goal of the work described in this paper was to assess
the commercial viability of active networking. While we
cannot claim to have settled this issue, we believe we
have made some progress towards an answer.

Commercially viable active nodes will almost certainly
place processing by active code in the control plane. In
the most recent high-performance switches and routers,
fast path packet and frame forwarding is handled by very
high-performance hardware that must be simple and there-
fore passive. Thus, we believe hybrid active nodes will
play a prominent role in the commercial arena. This is
not to say there is no role for software-based active nodes,
but we believe they are better suited for research or ex-
perimentation with active networking or for low-end de-
vices that emphasize features over performance.

Commercial viability also depends on active networking
infrastructure that supports active application mainte-
nance. Identifying this requirement and investigating it is
a major contribution of our work.

We explored several service interfaces that may be used to
implement active applications. We strongly believe a
MIB service interface is a powerful and effective way for
active code to interact with and control network devices.

We did not comprehensively explore the performance and
security issues that will affect commercial viability. We
believe vendors can deliver an initial deployment of ac-
tive networking based on the simple trust model used in
our prototyping. We believe the security architecture of
Java 2.0 is powerful and could form the basis of a sophis-
ticated active networking security facility. A more sophis-
ticated resource management model than the simple one
we use in our prototype may eventually be necessary,
although we are skeptical that one based on charging for
node resources will be practical.

Heterogeneity is an important issue that we did not
address. We expect solutions to it will require some form
of standardization, either of the active networking infra-
structure or of service interfaces. Ultimately, we do not
think running multiple EEs on a network device will be
supported in commercial deployments of active network-
ing.

Active networking technology is potentially very power-
ful and we believe researchers and engineers have only
scratched the surface in regard to its uses. Nevertheless,
other equally powerful technologies have failed in the
marketplace of ideas (e.g., timer-based transport proto-
cols, dynamically microprogrammable systems). Thus,
we believe the jury is still out on the question of whether
the expense of active networking technology is suffi-
ciently justified for commercial deployment.

7 Acknowledgements

We thank Ted Czotter for commenting on our original
service interface design, which led to several improve-
ments and Peter Wang for comments that led to several
improvements of this paper. We also thank Wenjun Luo,
who did some very early work on our experimental execu-
tion environment. As always, the referees provided useful
comments, which also improved the paper.

8 Bibliography

[1] D. Scott Alexander, "ALIEN: A generalized comput-
ing model of active networks," PhD Thesis, University of
Pennsylvania, Philadelphia, December 1998.

[2] D.S. Alexander, R. Braden, C.A. Gunter, A.W. Jack-
son, A.D. Keromytis, G.J. Minden, D. Wetherall, "Ac-
tive Network Encapsulation Protocol (ANEP),"

http://www.cis.upenn.edu/~switchware/ANEP, August
1997.

[3] D.S. Alexander, Jonathan M. Smith, "The architecture
of ALIEN," Proceedings of the First International Work-
ing Conference, IWAN °99, Berlin, Germany, June/July,
1999, (also appears as Lecture Notes in Computer Science
1653, Springer-Verlag, Berlin).

[4] Samrat Bhattacharjee, Kenneth J. Calvert, Ellen W.
Zegura, “Implementation of an active networking architec-
ture,” presented at the Gigabit Switch Technology Work-
shop, Washington University, St. Louis, July, 1996.

[5] D. Brent Chapman, “Network (in)security through IP
packet filtering,” Proceedings of the Third USENIX
UNIX Security Symposium, Baltimore, MD., Sept.
1992. 1996.

[6] Li Gong and Roland Schemers, “Implementing pro-
tection domains in the Java development kit 1.2,” Pro-
ceedings ISOC Symposium on Network and Distributed
System Security, San Diego, CA., 1998.

[7] J. Hartman, U. Manber, L. Peterson, T. Proebsting,
"Liquid Software: A new paradigm for networked sys-
tems," Technical Report 96-11, Department of Computer
Science, University of Arizona, June 1996.

[8] R. Jaeger, S. Bhattacharjee, J. K. Hollingsworth, R.
Duncan, T. Lavarian and F. Travostino, “Integrating ac-
tive networking and commercial grade routing platforms,”
Proceedings of the USENIX Special Workshop on Intel-
ligence at the Network Edge, March 20, 2000, San Fran-
cisco, CA.

[9] Anita Jones, “Protection in programmed systems,”
Ph.D. Thesis, Carnegie-Mellon University, Pittsburg,
Pennsylvania, June, 1973.

[10] P. Menage, "RCANE: A resource controlled frame-
work for active network services," Proceedings of the
First International Working Conference, IWAN ’99, Ber-

lin, Germany, June/July, 1999, (also appears as Lecture
Notes in Computer Science 1653, Springer-Verlag, Ber-
lin).

[11] Dan Nessett, “Commercial use of active network-
ing,” presented at the OpenSIG Workshop, University of
Toronto, October 5-6, 1998.

[12] Dan Nessett and Polar Humenn, “The Multilayer
Firewall,” Proceedings ISOC Symposium on Network
and Distributed System Security, San Diego, CA., 1998.

[13] L. Peterson, ed., "NodeOS interface specification,"
AN NodeOS Working Group Draft, July 1999.

[14] D. Raz, Y. Shavitt, "An active network approach to
efficient network management," Proceedings of the First
International Working Conference, IWAN ’99, Berlin,
Germany, June/July, 1999, (also appears as Lecture Notes
in Computer Science 1653, Springer-Verlag, Berlin).

[15] B. Schwartz, W. Zhou, A.W. Jackson, W.T. Strayer,
D. Rockwell, C. Partridge, "Smart packets for active
networks," 2nd IEEE OPENARCH, 1999.

[16] D.L. Tennenhouse, J.M. Smith, W.D. Sincoskie,
D.J. Wetherall, and G.J. Minden, “A survey of active
networking research,” IEEE Communications Magazine,
Jan., 1997.

[17] D.J. Wetherall, J.V. Guttag, D.L. Tennenhouse,
"ANTS: A toolkit for building and dynamically deploy-
ing network protocols," IEEE OPENARCH '98, San
Francisco, CA, April 1998.

